Technical Challenges of
CDR Compliance

Version1

\'

Voruna Pty L1
CDR Complia

VOIulTe

Contents

1.0

2.0
21
22
23

3.0
31
32

4.0
41
L2
43

5.0

6.0

Introduction and Overview

Key Technical Systems

OIDC-ComplianNt AUTNOMISATION SEIVEN ...t eeeeseeteeeeeevssees s eesessssessssessssseessssssessessseseees
CONSENEMOUEL ..ot ss s s s et s s st sesss st sessssssss
AP LQYET ..o eeveesssssssseeeesseseessssssssssssesssssessssssssssssesessssessssssss s sssss s ssssessssssssasssessesssssssssssssssenessseses

API Architectural Design Strategies

Larger SErvers anNd DAtADASES. ... oo eeessesssessssseessssssessesssssssssseessssssessesssessssasessesnns
(@ g =] gl =l D= = N =] o)] of =TSO

Non-functional Requirements

ENSUMNG HIGN AVAIHADIITY c.ooreeeeeeeteee et eesseessssseessss s ses s sssseessssseesessssnessssnseesssans
Performance @nNd SCAIADIIITY ... eess s sesessssssssessssssseessssssssssessssessasaesssees
Data LatenCy QN QUAITEY ..ot sseeesessseessssssesssssssessessssssssssseessssseesessassessssnseesssanas

Next Steps

References

1.0 Introduction and Overview

Objective: provide technical decision-makers of non-bank lenders (NBLs) an insight into the
technical requirements of CDR compliance, with a focus on implementation of the data-sharing API.

The Consumer Data Right (CDR) is an Australian regulatory framework empowering consumers to
control and share their data. Initially launched in banking and then energy, CDR is now extending to
non-bank lenders (NBL). This means that NBLs will become “Data Holders" (DHs) under CDR, required to
securely share product and customer data with accredited third parties at the consumer's request and
consent. With the earliest obligations materialising mid-2026 - see our whitepaper,

for more - the clock s ticking for NBLs to plan, acquire resources, and execute on
a strategy to meet these requirements.

Failure to implement CDR properly carries serious risks. Regulators have already demonstrated zero
tolerance for non-compliance - for instance, a major bank was fined over $750k for failing to correctly
provide required data (omitting credit limit information) (ACCC, 2025). Beyond fines, poor CDR
implementation can damage a lender’s reputation and cause customer attrition as consumers and
fintech partners lose trust in unreliable data services. On the positive side, a well-executed CDR
program can enhance customer trust, enable new partnerships, and keep lenders competitive in a
data-driven finance landscape.

Implementing CDR is more than a compliance checkbox - it requires coordinated technical systems,
architectural foresight, and rigorous execution. This paper outlines the core components required for
CDR compliance, with a particular focus on the design and implementation of the data-sharing API. In
doing so, it highlights critical architectural decisions and offers practical insights to help non-bank
lenders build a future-ready CDR capability.

This whitepaper is intended for the Chief Technical Officer and other key technical decision-makers of
non-bank lenders who are planning their participation in the CDR.

Technical Challenges of CDR Compliance - voruna.com.au Page 1

2.0 Key Technical Systems

Participating in CDR as a Data Holder requires a multi-faceted technical implementation. In this
section we'll discuss the key systems and some of their complexities.

CDR security profiles require each Data Holder to operate an OAuth 2.0/0IDC server for authorising
data sharing. When a Consumer wants to share data through a Data Recipient, they will be redirected
to the Data Holder's authorisation service. The Consumer authenticates (e.g. logs into the internet
banking or portal) and consents to specific data scopes through a CDR-compliant consent flow. The
OIDC server then issues an authorisation code and tokens as per the standard. Implementing this
involves integrating with the existing authentication system - this is more straightforward if there is
an existing OIDC infrastructure, though CDR-specific requirements like Financial-grade API (FAPI)
compliance may still require additional work. Lenders with no OIDC expertise might consider
outsourcing this component, given its criticality and complexity. Those with sufficient internal
resources should involve their security architects early to stand up a secure authorisation service that
meets the CDR Information Security Profile standards (DSB, 2025 version) (which specify requirements
like MTLS, JWT signing, encryption algorithms, etc.).

Each Data Holder needs to build out both parts of the Consent Model, being the Consent Flow and the
Consumer Dashboard. These are the only DH systems that a Consumer directly interacts with as all
other requests related to consents and their data are made by a Software Product via a Data Recipient.
As such, access is usually through an existing portal/app and company branding is important. They
must adhere to a sizeable list of Customer Experience standards that cover areas such as language,
authentication flow, sending notifications, accessibility and user interfaces (DSB, 2025 version). From a
data integration perspective, implementing these systems may involve extending an existing
customer database with new consent tables, or creating a separate, dedicated Consent database.

The Consent Flow allows a Consumer to share their data with a Software Product. l.e., a customer of
“Lightning Loans Co." can share their data with "LenderList App" to see if there's a better loan option for
them. This process requires the Software Product (LenderList App) to redirect their authenticated user
(the Consumer) to the start of a Data Holder's (Lightning Loans Co.) Consent Flow. The flow begins with
the Consumer authenticating with the Data Holder's OIDC authorisation server,and CDR mandates that
this must involve using a One-Time Password sent via email or mobile. The authenticated Consumer
then selects the parts of their data that they wish to share, known formally as scopes, and agrees to
the period for which the data is shared. To finish the flow, the user is redirected back to the Software
Product where they can now access their shared data. All records of a Consumer's interaction with this
flow are stored in the consent database.

Technical Challenges of CDR Compliance - voruna.com.au Page 2

The Consumer Dashboard is the second part of the Consent Model where a Consumer can view the
consents they have granted to different Software Products and revoke any active consents at any
time. This triggers a revocation event to be sent to the Data Recipient who is required to delete all
related data such that it can no longer be requested by the Software Product. The CDR ecosystem
actually involves two Consumer Dashboards: one by the Data Holder and the other by the Data
Recipient. So similarly, if a Consumer revokes a consent through a Data Recipient's Consumer
Dashboard, the Data Holder will receive a notification and must immediately ensure that data can no
longer be requested. Consumers also have access to consent dashboards through each Data
Recipient.

Each Data Holder must implement the set of standard APIs defined by the Consumer Data Standards
for Non-Bank Lending (DSB, 2025). This can be a considerable undertaking as it necessitates the
mapping of existing data to the standardised CDR schemas. This includes endpoints for authenticated,
Consumer-specific data such as account data, transaction data, customer profile data, etc. It also
includes unauthenticated endpoints for product data, as well as metadata like GET Status, GET Outages,
and GET Metrics, which report system availability and performance.

Data Holders must also ensure strict adherence to the JSON schemas and URL structures defined in the
CDR standards - the uniformity and accuracy across all data holders is core to the purpose of CDR and
non-adherence can be penalised. There are also non-functional requirements which include
performance requirements such as response times under 1000ms for high priority endpoints. When
using a compliance service for the infrastructure components of this system, Data Holders will still need
to map internal data structures to those required by the compliance service as well as ensure that their
systems meet the non-functional requirements. The bespoke mapping and provision of data is

. we specialise in translating complex data models into CDR-compliant APIs with
guaranteed performance and accuracy.

3.0 APIArchitectural Design Strategies

This next section will delve deeper into the most complex technical system, the API layer. This is the
least generic system as it depends directly on the structure of a Data Holder's existing data and thus
there is no one-size-fits-all architectural solution. One of the biggest technical challenges that should
inform the system design, is preventing it from impacting on core business operations. The APIs must
serve requests from multiple Data Recipients, and handle high continuous load, as well as respond to
large spikes. There is a significant risk of overwhelming core databases if the API layer is not
appropriate designed and implemented; either limiting accessibility to core systems, or at worst,
bringing them down entirely. This section will explore solutions to this challenge and discuss their
merits and weaknesses.

Technical Challenges of CDR Compliance - voruna.com.au Page 3

The first strategy for overcoming this issue is to simply build an API that directly accesses the core
databases and APIs. While this lacks complexity, this strategy adds the highest load to core systems
and is highly susceptible to failing the non-function requirement of a fast response time and high
availability. It is almost always the case that a single CDR endpoint must fetch data from several
different database tables, if not several separate databases or systems. Under this strategy, every
source of data must be able to return its data fast enough for the data to be compiled and served,
taking into account the overhead for authentication and handling of the request and response. This
means a single weak link in the system, which could simply be a core system that already has high traffic
from the Data Holder's core software, can see this strategy completely fail the performance
requirement. It also means all data sources must be available at all times. For this strategy to be
successful, all core systems would need to run on highly performant modern servers. It may require
increasing the size and power of the current systems, i.e. scaling up the RAM and CPUs of existing
databases and servers. This could have the advantage of being quick to implement and deploy for
monolithic, cloud-hosted systems, as it may only require a few configuration settings to be changed.
However, it's not necessarily a trivial configuration change and may not even be possible for certain
types of datastores, e.g. third-party hosted CRMs with inflexible rate limiting or fixed hard drives in data
centres. It will also incur a higher baseline operational cost, which could be substantial depending on
the number and type of databases and servers. Clearly this strategy poses a serious risk of wasting
development resources to build a non-compliant system.

The second strategy is to use Change Data Capture to track changes to core databases (for customers,
accounts, loans, transactions) and replicate those changes in real-time to a secondary database, which
we'll refer to as the CDR database. The CDR APl is then built to only use this database to serve requests,
which completely isolates the core systems from the additional load of CDR. Business-critical systems
are protected from traffic spikes and the CDR API can be scaled in a more fine-tuned, cost-effective
way. This strategy also means that any API endpoints that fetch data from multiple primary sources
does not need to rely on their individual performances or them all being available at the time of the
request, as the data for CDR requests is compiled in advance. The key to minimizing costs with this
strategy is that the CDR database is kept to the bare minimum, instead of replicating entire core
databases, it duplicates only the values that are required for CDR. This strategy does introduce the
complexity of keeping the CDR database in sync with the primary data sources, which can be achieved
using Change Data Capture. This approach proved successful in a major Australian bank's Open Banking
implementation, where CDC enabled real-time data replication for CDR APIs serving over 400,000
customers without requiring modifications to core banking infrastructure (Ramesh et al, 2025). By
capturing changes from existing systems and streaming them to the CDR database, they avoided
disrupting critical operations.

Technical Challenges of CDR Compliance - voruna.com.au Page 4

The implementation involves establishing a data pipeline that monitors the production databases
transaction log or uses event triggers for relevant tables (customers, loans, accounts, transactions).
Each change event is placed in a queue, filtered, batched, and then applied to the CDR database. Many
modern databases support CDC natively (e.g. . ,etc),
there are also open-source tools (,) or cloud services (

.) to stream changes. To optimise the pipeline, filtering the events is
necessary so that they capture only what's needed for servicing the API. Not every column on every
tableis part of the CDR specification. Focusing on the minimum necessary data reduces noise and
processing load. Filtering can either happen before the events are triggered (by only monitoring
changes to certain tables) or while they are being processed in the queue. The process typically
involves:

1. Initial Data Load: First, perform a one-time extraction of all existing in-scope data (all customers,
open loan accounts, and at least two years of transactions as required by CDR regulations) from
the core system. This establishes the baseline dataset in the new CDR database.

2. Ongoing Change Stream: Next, enable continuous CDC from that point forward. Each new
transaction (loan drawdown, repayment, fee, etc.) or update (address change, account status
change) in the core will generate an event.

3. DataMapping: As events are received, their data must be transformed to the CDR schema before
being saved into the CDR database. This way, the queries made by the API can be optimised for
minimum response times.

The CDR database should be designed for fast reads and high concurrency. If using a relational
database, proper indexing on customer IDs, account IDs, date fields (for transaction range queries) is
critical. It can be supplemented by anin-memory cache for serving static orinfrequently changing data.
This could include data such as product reference data (like product offerings, rates, fees) and
customer/account details which are often not changed after their creation.

The strategy of using CDC is far more resilient and cost-effective and has become the industry
standard for CDR. For most Data Holders, it would be Voruna's recommended approach.

4.0 Non-functional Requirements

This section discusses a few of the main non-functional requirements. The full list can be found at the
DSB website

CDR infrastructure must be highly reliable - consumers and accredited data recipients expect to fetch
dataondemand at any time. The Consumer Data Standards include strict non-functional requirements
for data holder APIs, such as a minimum 99.5% availability per month (DSB, 2025). In practical terms, this

Technical Challenges of CDR Compliance - voruna.com.au Page 5

allows for at most roughly 3.6 hours of unplanned downtime in a month. Moreover, this uptime
requirement covers both authenticated endpoints (customer data APIs that require a valid
consent/auth token) and unauthenticated endpoints (such as public product data).

Data holders must architect their systems with redundancy and failover capabilities to meet this: for
example, deploying APIs across multiple availability zones or data centers, using load balancers, and
having backup instances to eliminate single points of failure. Planned outages (for maintenance) are
permitted but must be reasonable in frequency/duration and communicated to ecosystem
participants in advance; standards require publishing of this outage information via a “Get Outages”
endpoint and giving at least one week’s notice for normal maintenance windows (DSB, 2025).

The CDR standards also define performance tiers for APl responsiveness and assert that 95% of calls
per hour must respond within these thresholds. High priority endpoints must respond within 1000ms,
while most other endpoints have a slightly more lenient threshold of 1500ms and above. It should be
noted that these response time thresholds apply regardless of APl load, hence Data Holders must
design for scaling: ensuring the API layer and database can handle spikes (for example, end-of-month
when many loan statements might be retrieved). The CDR API must handle concurrent requests from
potentially many data recipients, especially for a large customer base and as more fin-tech apps
integrate. Load testing should be used to validate throughput and mitigate obligation breaches.

One helpful practice is to implement APl rate limiting and throttling to protect your backend. Voruna's
CDR gateway solutions include built-in rate limiting, monitoring, and performance optimization to
ensure SLA compliance under peak load conditions. The CDR rules allow data holders to reject or defer
requests if capacity is exceeded, but only within certain thresholds (DSB, 2025). Use an APl gateway to
enforce reasonable limits and queue excess requests rather than letting your system overload. An API
gateway can also serve as afirst line of defence, quickly rejecting invalid requests and caching
frequent queries (as noted, caching can be employed at the gateway level too).

Technical Challenges of CDR Compliance - voruna.com.au Page 6

The requirements of low data latency and high data quality are poorly defined by the DSB but are
critical to the effectiveness of CDR. Low data latency means that whenever primary data is changed,
that change should be reflected as soon as possible through the CDR API. The rule of thumb being
that CDR data should always match what is accessible through the Data Holder's core software
systems (e.g. customer portal, banking app, etc). Clients have an expectation of low data latency, as
they should not be privy to any caching or intermediary databases involved with CDR to satisfy the
response time requirements. High data quality refers to serving product data that accurately matches
what is published elsewhere by the Data Holder. The CDR API should not serve information about a
particular product that does not match what is advertised on the Data Holder's website and product
disclosure statements.

Technical Challenges of CDR Compliance - voruna.com.au Page 7

5.0 NextSteps

Becoming a CDR data holder introduces a range of technical, regulatory, and operational challenges,
but with the right architecture and implementation strategy, non-bank lenders can turn compliance
into a strategic asset.

Voruna specializes in helping lenders navigate this journey. From system design to implementation,
our team brings deep expertise in CDR data architecture, integration pipelines, and regulatory
alignment. Whether you're just beginning your CDR roadmap or validating an existing design, we can
help you build with confidence.

Action items to begin your CDR journey:

Perform a gap analysis of your current systems: What components do you already have (e.g.,an
APl gateway, an OAuth server), and what needs to be developed or integrated?

Engage with CDR solution providers: A partner like Voruna can offer reference implementations,
testing environments, and integration templates to reduce time-to-compliance.

Build integration interfaces: Ensure core systems can export or stream data to your CDR layer,
especially if CDC tools are unavailable.

Update your architecture documentation: Map the data and consent flows end-to-end to align
teams and support audit readiness.

Test early and often: Simulate data recipient scenarios to surface bugs or bottlenecks before
going live.

to schedule adiscovery session. Make CDR compliance a competitive advantage - not

just aregulatory hurdle.

Technical Challenges of CDR Compliance - voruna.com.au Page 8

6.0 References

ACCC. (2025). National Australia Bank pays 5751200 in penalties for alleged breaches of Consumer Data
Right Rules. Australian Competition & Consumer Commission (ACCC).

DSB. (2025). Consumer Data Standards. Data Standards Body.

Ramesh, H., Sumitha, M., Srinivasan R., & Vargas, T.(2025). How TCS unlocked Open Banking with
Amazon Kinesis Data Streams.

Wijesekara, D. (2020). Non Performance Reqguirements of Consumer Data Standards Specification :
Open Banking in Australia. Medium.

Technical Challenges of CDR Compliance - voruna.com.au Page 9

